Friday 20 February 2015

RELASI DAN FUNGSI Galileo Galilei (1564-1642) merupakan salah satu astronom terkenal dari Italia yang dikenal luas dengan penemuannya tentang hubungan yang sangat teratur antara tinggi suatu benda yang dijatuhkan dengan waktu tempuhnya menuju tanah. Konsep “fungsi” terdapat hampir dalam setiap cabang matematika, sehingga merupakan suatu yang sangat penting artinya dan banyak sekali kegunaannya. Akan tetapi pengertian dalam matematika agak berbeda dengan pengertian dalam kehidupan sehari-hari.Dalam pengertian sehari-hari, “fungsi” adalah guna atau manfaat. Kata fungsi dalam matematika sebagaimana diperkenalkan oleh Leibniz (1646-1716) terlihat di atas digunakan untuk menyatakan suatu hubungan atau kaitan yang khas antara dua himpunan. Mengingat konsep fungsi menyangkut hubungan atau kaitan dari dua himpunan, maka disini kita awali dulu pembicaraan kita mengenai fungsi dengan hubungan atau relasi antara dua himpunan. A.Pengertian Relasi Suatu relasi (biner) F dari himpunan A ke himpunan B adalah suatu perkawanan elemen-elemen di A dengan elemen-elemen di B. B.Pengertian Relasi Suatu relasi (biner) F dari himpunan A ke himpunan B adalah suatu perkawanan elemen-elemen di A dengan elemen-elemen di B. didefinisikan sebagai berikut : Definisi: Suatu fungsi f dari himpunan A ke himpunan B adalah suatu relasi yang memasangkan setiap elemen dari A secara tunggal, dengan elemen pada B. C.Sifat Fungsi Dengan memperhatikan bagaimana elemen-elemen pada masing-masing himpunan A dan B yang direlasikan dalam suatu fungsi, maka kita mengenal tiga sifat fungsi yakni sebagai berikut : 1. Injektif (Satu-satu) Misalkan fungsi f menyatakan A ke B maka fungsi f disebut suatu fungsi satu-satu (injektif), apabila setiap dua elemen yang berlainan di A akan dipetakan pada dua elemen yang berbeda di B. Selanjutnya secara singkat dapat dikatakan bahwa f:A→B adalah fungsi injektif apabila a ≠ a’ berakibat f(a) ≠ f(a’) atau ekuivalen, jika f(a) = f(a’) maka akibatnya a = a’. 2. Surjektif (Onto) Misalkan f adalah suatu fungsi yang memetakan A ke B maka daerah hasil f(A) dari fungsi f adalah himpunan bagian dari B. Apabila f(A) = B, yang berarti setiap elemen di B pasti merupakan peta dari sekurang-kurangnya satu elemen di A maka kita katakan f adalah suatu fungsi surjektif atau “f memetakan A Onto B”. 3.Bijektif (Korespondensi Satu-satu) Suatu pemetaan f: A→B sedemikian rupa sehingga f merupakan fungsi yang injektif dan surjektif sekaligus, maka dikatakan “f adalah fungsi yang bijektif” atau “ A dan B berada dalam korespondensi satu-satu” D.Jenis – jenis Fungsi Jika suatu fungsi f mempunyai daerah asal dan daerah kawan yang sama, misalnya D, maka sering dikatakan fungsi f pada D. Jika daerah asal dari fungsi tidak dinyatakan maka yang dimaksud adalah himpunan semua bilangan real (R). Untuk fungsi-fungsi pada R kita kenal beberapa fungsi antara lain sebagai berikut. a. Fungsi Konstan b. Fungsi Identitas c. Fungsi Linear d. Fungsi Kuadrat e. Fungsi Rasional Sumber :http://ilmutambah.wordpress.com/2009/08/31/pengertian-relasi-fungsi-sifat-dan-jenis-fungsi/ Diposkan oleh Hanis Setyaji di 23.59 0 komentar Label: KELAS VII FAKTORISASI SUKU ALJABAR A. Operasi Hitung Bentuk Aljabar Di Kelas VII, kamu telah mempelajari pengertian bentuk aljabar, koefisien, variabel, konstanta, suku, dan suku sejenis. Untuk mengingatkanmu kembali, pelajari contoh-contoh berikut. 1. 2pq 4. x2 + 3x –2 2. 5x + 4 5. 9x2 – 3xy + 8 3. 2x + 3y –5 Bentuk aljabar nomor (1) disebut suku tunggal atau suku satu karena hanya terdiri atas satu suku, yaitu 2pq. Pada bentuk aljabar tersebut, 2 disebut koefisien, sedangkan p dan q disebut variabel karena nilai p dan q bisa berubah-ubah. Adapun bentuk aljabar nomor (2) disebut suku dua karena bentuk aljabar ini memiliki dua suku, sebagai berikut. Suku yang memuat variabel x, koefisiennya adalah 5. Suku yang tidak memuat variabel x, yaitu 4, disebut konstanta. Konstanta adalah suku yang nilainya tidak berubah. Sekarang, pada bentuk aljabar nomor (3), (4), dan (5), coba kamu tentukan manakah yang merupakan koefisien, variabel, konstanta, dan suku? 1. Penjumlahan dan Pengurangan Bentuk Aljabar Pada bagian ini, kamu akan mempelajari cara menjumlahkan dan mengurangkan suku-suku sejenis pada bentuk aljabar. Pada dasarnya, sifat-sifat penjumlahan dan pengurangan yang berlaku pada bilangan riil, berlaku juga untuk penjumlahan dan pengurangan pada bentuk-bentuk aljabar, sebagai berikut. a. Sifat Komutatif a + b = b + a, dengan a dan b bilangan riil b. Sifat Asosiatif (a + b) + c = a + (b +c), dengan a, b, dan c bilangan riil c. Sifat Distributif a (b + c) = ab + ac, dengan a, b, dan c bilangan riil Agar kamu lebih memahami sifat-sifat yang berlaku pada bentuk aljabar, perhatikan contoh-contoh soal berikut. Contoh Soal : Sederhanakan bentuk-bentuk aljabar berikut. a. 6mn + 3mn b. 16x + 3 + 3x + 4 c. –x – y + x – 3 d. 2p – 3p2 + 2q – 5q2 + 3p e. 6m + 3(m2 – n2) – 2m2 + 3n2 Jawab: a. 6mn + 3mn = 9mn b. 16x + 3 + 3x + 4 = 16x + 3x + 3 + 4 = 19x + 7 c. –x – y + x – 3 = –x + x – y – 3 = –y – 3 d. 2p – 3p2 + 2q – 5q2 + 3p = 2p + 3p – 3p2 + 2q – 5q2 = 5p – 3p2 + 2q – 5q2 = –3p2 + 5p – 5q2 + 2q e. 6m + 3(m2 – n2) – 2m2 + 3n2 = 6m + 3m2 – 3n2 – 2m2 + 3n2 = 6m + 3m2 – 2m2 – 3n2 + 3n2 = m2 + 6m Contoh Soal : Tentukan hasil dari: a. penjumlahan 10x2 + 6xy – 12 dan –4x2 – 2xy + 10, b. pengurangan 8p2 + 10p + 15 dari 4p2 – 10p – 5. Jawab: a. 10x2 + 6xy – 12 + (–4x2 – 2xy + 10) = 10x2 – 4x2 + 6xy – 2xy – 12 + 10 = 6x2 + 4xy – 2 b. (4p2 – 10p – 5) – (8p2 + 10p + 15) = 4p2 – 8p2 – 10p –10p – 5 – 15 = –4p2 – 20p – 20 2. Perkalian Bentuk Aljabar Perhatikan kembali sifat distributif pada bentuk aljabar. Sifat distributif merupakan konsep dasar perkalian pada bentuk aljabar. Untuk lebih jelasnya, pelajari uraian berikut. a. Perkalian Suku Satu dengan Suku Dua Agar kamu memahami perkalian suku satu dengan suku dua bentuk aljabar, pelajari contoh soal berikut. Contoh Soal : Gunakan hukum distributif untuk menyelesaikan perkalian berikut. a. 2(x + 3) c. 3x(y + 5) b. –5(9 – y) d. –9p(5p – 2q) Jawab: a. 2(x + 3) = 2x + 6 c. 3x(y + 5) = 3xy + 15x b. –5(9 – y) = –45 + 5y d. –9p(5p – 2q) = –45p2 + 18pq b. Perkalian Suku Dua dengan Suku Dua Agar kamu memahami materi perkalian suku dua dengan suku dua bentuk aljabar, pelajari contoh soal berikut. Contoh Soal : Tentukan hasil perkalian suku dua berikut, kemudian sederhanakan. a. (x + 5)(x + 3) c. (2x + 4)(3x + 1) b. (x – 4)(x + 1) d. (–3x + 2)(x – 5) Jawab: a. (x + 5)(x + 3) = (x + 5)x + (x + 5)3 = x2 + 5x + 3x + 15 = x2 + 8x + 15 b. (x – 4)(x + 1) = (x – 4)x + (x – 4)1 = x2 – 4x + x – 4 = x2 – 3x – 4 c. (2x + 4)(3x + 1) = (2x + 4)3x + (2x + 4)1 = 6x2 + 12x + 2x + 4 = 6x2 + 14x + 4 d. (–3x + 2)(x – 5) = (–3x + 2)x + (–3x + 2)(–5) = –3x2 + 2x + 15x – 10 = –3x2 + 17x – 10 Contoh Soal : Diketahui sebuah persegipanjang memiliki panjang (5x + 3) cm dan lebar (6x– 2) cm. Tentukan luas persegipanjang tersebut. Jawab: Diketahui : p = (5x + 3) cm dan l = (6x – 2) cm Ditanyakan : luas persegipanjang Luas = p × l = (5x + 3)(6x – 2) = (5x + 3)6x + (5x + 3)(–2) = 30x2 + 18x – 10x – 6 = 30x2 + 8x – 6 Jadi, luas persegipanjang tersebut adalah (30x2 + 8x – 6) cm2 Amati kembali Contoh Soal. Ternyata perkalian dua suku bentuk aljabar (a + b) dan (c + d) dapat ditulis sebagai berikut. (a + b)(c + d) = (a + b)c + (a + b)d = ac + bc + ad + bd = ac + ad + bc + bd Secara skema, perkalian ditulis: Cara seperti ini merupakan cara lain yang dapat digunakan untuk menyelesaikan perkalian antara dua buah suku bentuk aljabar. Pelajari contoh soal berikut. Contoh Soal : Selesaikan perkalian-perkalian berikut dengan menggunakan cara skema. a. (x + 1)(x + 2) c. (x – 2)(x + 5) b. (x + 8)(2x + 4) d. (3x + 4)(x – 8) Jawab: a. (x + 1)(x + 2) = x2 + 2x + x + 2 = x2 + 3x + 2 b. (x + 8)(2x + 4) = 2x2 + 4x + 16x + 32 = 2x2 + 20x + 32 c. (x – 2)(x + 5) = x2 + 5x –2x –10 = x2 + 3x – 10 d. (3x + 4)(x –8) = 3x2 – 24x + 4x – 32 = 3x2 – 20x – 32 3. Pembagian Bentuk Aljabar Pembagian bentuk aljabar akan lebih mudah jika dinyatakan dalam bentuk pecahan. Pelajarilah contoh soal berikut. Contoh Soal : Tentukan hasil pembagian berikut. a. 8x : 4 c. 16a2b : 2ab b. 15pq : 3p d. (8x2 + 2x) : (2y2 – 2y) Jawab: 4. Perpangkatan Bentuk Aljabar Di Kelas VII, kamu telah mempelajari definisi bilangan berpangkat. Pada bagian ini materi tersebut akan dikembangkan, yaitu memangkatkan bentuk aljabar. Seperti yang telah kamu ketahui, bilangan berpangkat didefinisikan sebagai berikut. Untuk a bilangan riil dan n bilangan asli. Definisi bilangan berpangkat berlaku juga pada bentuk aljabar. Untuk lebih jelasnya, pelajari uraian berikut. a. a5 = a × a × a × a × a b. (2a)3 = 2a × 2a × 2a = (2 × 2 × 2) × (a × a × a) = 8a3 c. (–3p)4 = (–3p) × (–3p) × (–3p) × (–3p) = ((–3) × (–3) × (–3) × (–3)) × (p × p × p × p) = 81p4 d. (4x2y)2 = (4x2y) × (4x2y) = (4 × 4) × (x2 × x2) × (y × y) = 16x4y2 Sekarang, bagaimana dengan bentuk (a + b)2? Bentuk (a + b)2 merupakan bentuk lain dari (a + b) (a + b). Jadi, dengan menggunakan sifat distributif, bentuk (a + b)2 dapat ditulis: (a + b)2 = (a + b) (a + b) = (a + b)a + (a + b)b = a2 + ab + ab + b2 = a2 + 2ab + b2 Dengan cara yang sama, bentuk (a – b)2 juga dapat ditulis sebagai: (a – b)2 = (a – b) (a – b) = (a – b)a + (a – b)(–b) = a2 – ab – ab + b2 = a2 – 2ab + b2 Contoh Soal : Selanjutnya, akan diuraikan bentuk (a + b)3, sebagai berikut. (a + b)3 = (a + b) (a + b)2 = (a + b) (a2 + 2ab + b2) (a+b)2 = a2 + 2ab + b2 = a(a2 + 2ab + b2 ) + b (a2 + 2ab + b2 ) (menggunakan cara skema) = a3 + 2a2b + ab2 + a2b + 2ab2 + b3 (suku yang sejenis dikelompokkan) = a3 + 2a2b + a2b + ab2 +2ab2 + b3 (operasikan suku-suku yang sejenis) = a3 + 3a2b + 3ab2 + b3 Untuk menguraikan bentuk aljabar (a + b)2, (a + b)3, dan (a + b)4, kamu dapat menyelesaikannya dalam waktu singkat. Akan tetapi, bagaimana dengan bentuk aljabar (a + b)5, (a + b)6, (a + b)7, dan seterusnya? Tentu saja kamu juga dapat menguraikannya, meskipun akan memerlukan waktu yang lebih lama. Untuk memudahkan penguraian perpangkatan bentuk-bentuk aljabar tersebut, kamu bisa menggunakan pola segitiga Pascal . Sekarang, perhatikan pola segitiga Pascal berikut. Hubungan antara segitiga Pascal dengan perpangkatan suku dua bentuk aljabar adalah sebagai berikut. Sebelumnya, kamu telah mengetahui bahwa bentuk aljabar (a + b)2 dapat diuraikan menjadi a2 + 2ab + b2. Jika koefisien-koefisiennya dibandingkan dengan baris ketiga pola segitiga Pascal, hasilnya pasti sama, yaitu 1, 2, 1. Ini berarti, bentuk aljabar (a + b)2 mengikuti pola segitiga Pascal. Sekarang, perhatikan variabel pada bentuk a2 + 2ab + b2. Semakin ke kanan, pangkat a semakin berkurang (a2 kemudian a). Sebaliknya, semakin ke kanan pangkat b semakin bertambah (b kemudian b2). Jadi, dengan menggunakan pola segitiga Pascal dan aturan perpangkatan variabel, bentuk-bentuk perpangkatan suku dua (a + b)3, (a + b)4, (a + b)5, dan seterusnya dapat diuraikan sebagai berikut. (a + b)3 = a3 + 3a2b + 3ab2 + b3 (a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4 (a + b)5 = a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b5 dan seterusnya. Perpangkatan bentuk aljabar (a – b)n dengan n bilangan asli juga mengikuti pola segitiga Pascal. Akan tetapi, tanda setiap koefisiennya selalu berganti dari (+) ke (–), begitu seterusnya. Pelajarilah uraian berikut. (a – b)2 = a2 – 2ab + b2 (a – b)3 = a3 – 3a2b + 3ab2 – b3 (a – b)4 = a4 – 4a3b + 6a2b2 – 4ab3 + b4 (a – b)5 = a5 – 5a4b + 10a3b2 – 10a2b3 + 5ab4 – b5 B. Pemfaktoran Bentuk Aljabar 1. Pemfaktoran dengan Sifat Distributif Di Sekolah Dasar, kamu tentu telah mempelajari cara memfaktorkan suatu bilangan. Masih ingatkah kamu mengenai materi tersebut? Pada dasarnya, memfaktorkan suatu bilangan berarti menyatakan suatu bilangan dalam bentuk perkalian faktor-faktornya. Pada bagian ini, akan dipelajari cara-cara memfaktorkan suatu bentuk aljabar dengan menggunakan sifat distributif. Dengan sifat ini, bentuk aljabar ax + ay dapat difaktorkan menjadi a(x + y), di mana a adalah faktor persekutuan dari ax dan ay. Untuk itu, pelajarilah Contoh Soal berikut. Contoh Soal : Faktorkan bentuk-bentuk aljabar berikut. a. 5ab + 10b c. –15p2q2 + 10pq b. 2x – 8x2y d. 1/2 a3b2 + 1/4 a2b3 Jawab: a. 5ab + 10b Untuk memfaktorkan 5ab + 10b, tentukan faktor persekutuan dari 5 dan 10, kemudian dari ab dan b. Faktor persekutuan dari 5 dan 10 adalah 5. Faktor persekutuan dari ab dan b adalah b. Jadi, 5ab + 10b difaktorkan menjadi 5b(a + 2). b. 2x – 8x2y Faktor persekutuan dari 2 dan –8 adalah 2. Faktor persekutuan dari x dan x2y adalah x. Jadi, 2x – 8x2y = 2x(1 – 4xy). c. –15p2q2 + 10pq Faktor persekutuan dari –15 dan 10 adalah 5. Faktor persekutuan dari p2q2 dan pq adalah pq. Jadi, –15p2q2 + 10pq = 5pq (–3pq + 2). d. 1/2 a3b2 + 1/4 a2b3 Faktor persekutuan dari 1/2 dan 1/4 adalah 1/4. Faktor persekutuan dari a3b2 adalah a2b3 adalah a2b2. Jadi, 1/2 a3b2 + 1/4 a2b3 = 1/4 a2b2 (2a +b) 2. Selisih Dua Kuadrat Perhatikan bentuk perkalian (a + b)(a – b). Bentuk ini dapat ditulis (a + b)(a – b) = a2 – ab + ab – b2 = a2 – b2 Jadi, bentuk a2 – b2 dapat dinyatakan dalam bentuk perkalian (a + b) (a – b). Bentuk a2 – b2 disebut selisih dua kuadrat Contoh Soal : Faktorkan bentuk-bentuk berikut. a. p2 – 4 c. 16 m2 – 9n2 b. 25x2 – y2 d. 20p2 – 5q2 Jawab: a. p2 – 4 = (p + 2)(p – 2) b. 25x2 – y2 = (5x + y)(5x – y) c. 16m2 – 9n2 = (4m + 3n)(4m – 3n) d. 20p2 – 5q2 = 5(4p2 – q2) = 5(2p + q)(2p – q) 3. Pemfaktoran Bentuk Kuadrat a. Pemfaktoran bentuk ax2 + bx + c dengan a = 1 Perhatikan perkalian suku dua berikut. (x + p)(x + q) = x2 + qx + px + pq = x2 + (p + q)x + pq Jadi, bentuk x2 + (p + q)x + pq dapat difaktorkan menjadi (x + p) (x + q). Misalkan, x2 + (p + q)x + pq = ax2 + bx + c sehingga a = 1, b = p + q, dan c = pq. Dari pemisalan tersebut, dapat dilihat bahwa p dan q merupakan faktor dari c. Jika p dan q dijumlahkan, hasilnya adalah b. Dengan demikian untuk memfaktorkan bentuk ax2 + bx + c dengan a = 1, tentukan dua bilangan yang merupakan faktor dari c dan apabila kedua bilangan tersebut dijumlahkan, hasilnya sama dengan b. Agar kamu lebih memahami materi ini, pelajarilah contoh soal berikut. Contoh Soal : Faktorkanlah bentuk-bentuk berikut. a. x2 + 5x + 6 b. x2 + 2x – 8 Jawab: a. x2 + 5x + 6 = (x + …) (x + …) Misalkan, x2 + 5x + 6 = ax2 + bx + c, diperoleh a = 1, b = 5, dan c = 6. Untuk mengisi titik-titik, tentukan dua bilangan yang merupakan faktor dari 6 dan apabila kedua bilangan tersebut dijumlahkan, hasilnya sama dengan 5. Faktor dari 6 adalah 6 dan 1 atau 2 dan 3, yang memenuhi syarat adalah 2 dan Jadi, x2 + 5x + 6 = (x + 2) (x + 3) b. x2 + 2x – 8 = (x + …) (x + …) Dengan cara seperti pada (a), diperoleh a = 1, b = 2, dan c = –8. Faktor dari 8 adalah 1, 2, 4, dan 8. Oleh karena c = –8, salah satu dari dua bilangan yang dicari pastilah bernilai negatif. Dengan demikian, dua bilangan yang memenuhi syarat adalah –2 dan 4, karena –2 × 4 = –8 dan –2 + 4 = 2. Jadi, x2 + 2x – 8 = (x + (–2)) (x + 4) = (x – 2) (x + 4) b. Pemfaktoran Bentuk ax2 + bx + c dengan a ≠ 1 Sebelumnya, kamu telah memfaktorkan bentuk ax2 + bx + c dengan a = 1. Sekarang kamu akan mempelajari cara memfaktorkan bentuk ax2 + bx + c dengan a ≠ 1. Perhatikan perkalian suku dua berikut. (x + 3) (2x + 1) = 2x2 + x + 6x + 3 = 2x2 + 7x + 3 Dengan kata lain, bentuk 2x2 + 7x + 3 difaktorkan menjadi (x + 3) (2x + 1). Adapun cara memfaktorkan 2x2 + 7x + 3 adalah dengan membalikkan tahapan perkalian suku dua di atas. 2x2 + 7x + 3 = 2x2 + (x + 6 x) +3 (uraikan 7x menjadi penjumlahan dua suku yaitu pilih ( x + 6x ) = (2x2 + x) + (6x + 3) = x(2x + 1) + 3(2x + 1) (Faktorkan menggunakan sifat distributif) = (x + 3)(2x+1) Dari uraian tersebut dapat kamu ketahui cara memfaktorkan bentuk ax2 + bx + c dengan a ≠ 1 sebagai berikut. Uraikan bx menjadi penjumlahan dua suku yang apabila kedua suku tersebut dikalikan hasilnya sama dengan (ax2)(c). Faktorkan bentuk yang diperoleh menggunakan sifat distributif Contoh Soal : Faktorkan bentuk-bentuk berikut. a. 2x2 + 11x + 12 b. 6x2 + 16x + 18 Jawab: a. 2x2 + 11x + 12 = 2x2 + 3x + 8x + 12 = (2x2 + 3x) + (8x + 12) = x(2x + 3) + 4(2x + 3) = (x + 4)(2x + 3) Jadi, 2x2 + 11x + 12 = (x + 4)(2x + 3). b. 6x2 + 16x + 8 = 6x2 + 4x + 12x + 8 = (6x2 + 4x) + (12x + 8) = 2x(3x + 2) + 4(3x + 2) = (2x + 4)(3x + 2) Jadi, 6x2 + 16x + 8 = (2x + 4)(3x +2) C. Pecahan dalam Bentuk Aljabar 1. Penjumlahan dan Pengurangan Pecahan Bentuk Aljabar Di Kelas VII, kamu telah mempelajari cara menjumlahkan dan mengurangkan pecahan. Pada bagian ini, materi tersebut dikembangkan sampai dengan operasi penjumlahan dan pengurangan pecahan bentuk aljabar. Cara menjumlahkan dan mengurangkan pecahan bentuk aljabar adalah sama dengan menjumlahkan dan mengurangkan pada pecahan biasa, yaitu dengan menyamakan penyebutnya terlebih dahulu.

No comments:

Post a Comment